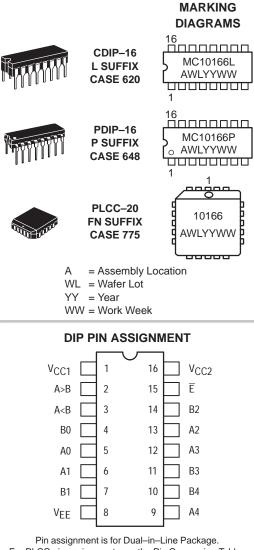

5-Bit Magnitude Comparator

The MC10166 is a high speed expandable 5-bit comparator for comparing the magnitude of two binary words. Two outputs are provided: A < B and A > B. A = B can be obtained by NORing the two outputs with an additional gate. A high level on the enable function forces both outputs low. Multiple MC10166s may be used for larger word comparisons.

- $P_D = 440 \text{ mW typ/pkg}$ (No Load)
- t_{pd} =Data to Output 6.0 ns typ
- E to output 2.5 ns typ
- t_r , $t_f = 2.0$ ns typ (20%-80%)


TRUTH TABLE						
	Inputs	-	Out	outs		
Ē	А	В	A < B	A > B		
Н	Х	Х	L	L		
L	Word A =	= Word B	L	L		
L	Word A >	> Word B	L	Н		
L	Word A <	< Word B	Н	L		

.....

ON Semiconductor

http://onsemi.com

Pin assignment is for Dual–in–Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ORDERING INFORMATION

Device	Package	Shipping		
MC10166L	CDIP-16	25 Units / Rail		
MC10166P	PDIP-16	25 Units / Rail		
MC10166FN	PLCC-20	46 Units / Rail		

© Semiconductor Components Industries, LLC, 2000 March, 2000 – Rev. 6

ELECTRICAL CHARACTERISTICS

		Test Limits								
	Pin Under	–30°C			+25°C		+85°C		1	
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	١E	8		117		85	106		117	mAdc
Input Current	linH	5		350			220		220	μAdc
	l _{inL}	5	0.5		0.5			0.3		μAdc
Output Voltage Logic 1	VOH	2 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Output Voltage Logic 0	V _{OL}	2 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
Threshold Voltage Logic 1	Vона	2 3	-1.080 -1.080		-0.980 -0.980			-0.910 -0.910		Vdc
Threshold Voltage Logic 0	VOLA	2 3		-1.655 -1.655			-1.630 -1.630		-1.595 -1.595	Vdc
Switching Times (50 Ω Load)										ns
Propagation Data to Output Delay	^t 9+2+ ^t 9–2– t _{11–2+} t _{11+2–} t ₇₊₃₊ t _{7–3–}	2 2 2 3 3	1.0 1.0 1.0 1.0 1.0 1.0	8.0 8.0 8.0 8.0 8.0 8.0	1.0 1.0 1.0 1.0 1.0 1.0	6.0 6.0 6.0 6.0 6.0 6.0	7.6 7.6 7.6 7.6 7.6 7.6	1.0 1.0 1.0 1.0 1.0 1.0	8.4 8.4 8.4 8.4 8.4 8.4	
Enable to Output	t _{15–3+} t _{15+3–}	3 3	1.0 1.0	3.8 3.8	1.0 1.0	2.5 2.5	3.6 3.6	1.0 1.0	4.0 4.0	
Rise Time (20 to 80%)	t2+	2	1.0	3.6	1.1	2.0	3.5	1.1	3.8	
Fall Time (20 to 80%)	t2-	2	1.0	3.6	1.1	2.0	3.5	1.1	3.8	

ELECTRICAL CHARACTERISTICS (continued)

					TEST VOL	TAGE VALUI	ES (Volts)		
		@ Test Te	mperature	V _{IHmax}	V _{ILmin}	VIHAmin	VILAmax	VEE	1
			–30°C	-0.890	-1.890	-1.205	-1.500	-5.2	1
			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	1
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1
			Pin	TEST VOLTAGE APPLIED TO PINS LISTED BELOW			ELOW	1	
Charac	teristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	VIHAmin	VILAmax	V _{EE}	(VCC) Gnd
Power Supply Dr	rain Current	١ _E	8		4,7,10,11,14			8	1, 16
Input Current		linH	5	5				8	1, 16
		l _{inL}	5		5			8	1, 16
Output Voltage	Logic 1	VOH	2 3	5 4				8 8	1, 16 1, 16
Output Voltage	Logic 0	VOL	2 3	5, 15 4, 15				8 8	1, 16 1, 16
Threshold Voltag	ge Logic 1	Vона	2 3	5 4			15 15	8 8	1, 16 1, 16
Threshold Voltag	ge Logic 0	VOLA	2 3	5 4		15 15		8 8	1, 16 1, 16
Switching Times	(50Ω Load)			+1.11V		Pulse In	Pulse Out	–3.2 V	+2.0
Propagation Dela	ay Data to Output	t9+2+ t9_2_ t11_2+ t11+2_ t7+3+ t7_3_	2 2 2 3 3	12 12 6 6		9 9 11 11 7 7	2 2 2 2 3 3	8 8 8 8 8 8	1, 16 1, 16 1, 16 1, 16 1, 16 1, 16 1, 16
	Enable to Output	t _{15–3+} t _{15+3–}	3 3	10 10		15 15	3 3	8 8	1, 16 1, 16
Rise Time	(20 to 80%)	t2+	2			9	2	8	1, 16
Fall Time	(20 to 80%)	t2-	2			9	2	8	1, 16

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50–ohm resistor to –2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

APPLICATION INFORMATION

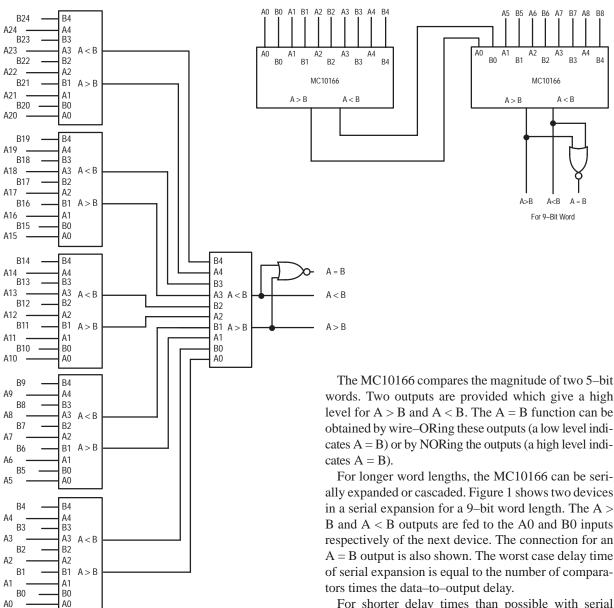
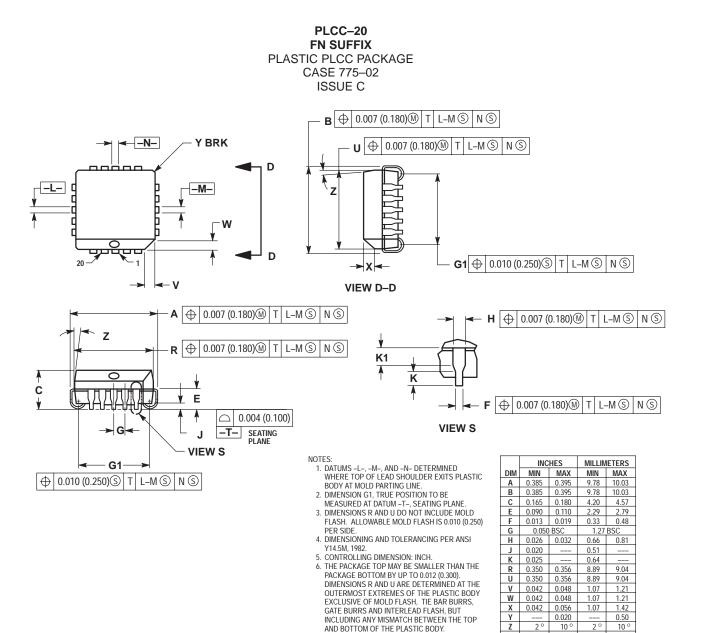


FIGURE 1 — 9-BIT MAGNITUDE COMPARATOR


FIGURE 2 — 25-BIT MAGNITUDE COMPARATOR

words. Two outputs are provided which give a high level for A > B and A < B. The A = B function can be obtained by wire-ORing these outputs (a low level indicates A = B) or by NORing the outputs (a high level indi-

ally expanded or cascaded. Figure 1 shows two devices in a serial expansion for a 9-bit word length. The A >B and A < B outputs are fed to the A0 and B0 inputs respectively of the next device. The connection for an A = B output is also shown. The worst case delay time of serial expansion is equal to the number of compara-

For shorter delay times than possible with serial expansion, devices can be cascaded. Figure 2 shows a 25-bit cascaded comparator whose worst case delay is two data-to-output delays. The cascaded scheme can be extended to longer word lengths.

PACKAGE DIMENSIONS

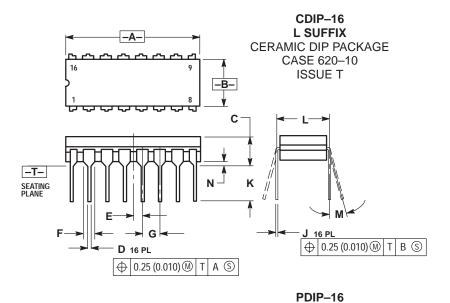
http://onsemi.com 5

7

(0.635).

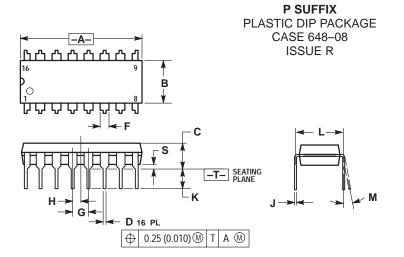
AND BOTTOM OF THE PLASTIC BODT. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940).

THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 G1 0.310 0.330


K1 0.040

7.88

1.02


8.38

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050 BSC		1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
К	0.125	0.170	3.18	4.31	
L	0.300 BSC		7.62 BSC		
М	0 °	15°	0 °	15 °	
Ν	0.020	0.040	0.51	1.01	

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100 BSC		2.54 BSC		
Н	0.050	0.050 BSC		BSC	
J	0.008	0.015	0.21	0.38	
К	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada **Email:** ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.